
Massively Parallel Algorithms
Dense Matrix Algorithms

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 2 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

Warming Up: Matrix-Vector Product

§  Given matrix A, and vector x, compute

§  One of the most important operations in linear algebra algorithms

§  Called SGEMV in BLAS (Basic Linear Algebra Subroutines)

§  First approach: one thread per row

§  Observation: all threads use the same data from x → shared memory

y = Ax

= *

y[i]

A[i,*]

x[]

M

N

G. Zachmann 3 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  For sake of clarity, we assume
M, N = multiple of block-size

multMatrixVector(const float * A, const float * x,
 const int n_columns, float * y)
{

 __shared__ x_cache[THREADS_PER_BLOCK];
 yi = 0.0; // output of each thread
 int i = threadIdx.x + blockIdx.x * blockDim.x; // row index
 for (int j = 0; j < n_columns; j += THREADS_PER_BLOCK)
 {

 // new segment of columns → fill cache
 x_cache[threadIdx.x] = x[j + threadIdx.x];
 // now process this segment of columns
 for (int k = 0; k < THREADS_PER_BLOCK; k ++) {
 Aij = A[i*n_columns + (j+k)];
 yi += Aij*x_cache[j+k];
 }
 }

 y[i] = yi;
}

First Attempt

* i

j

j

Block of
threads

Blocksize

Block-
size

G. Zachmann 4 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  The "natural" (C) way to store matrices
is called row major order

§  Aij is stored at memory address A + i*n + j

§  For a conventional (sequential)
matrix-vector-multiplication algorithm,
this is good:

0

4

8

12

16

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

for (int i = 0; i < M; i ++) {
 float yi = 0.0;
 for (int j = 0; j < N; j ++)
 yi += A[i][j] * x[j];
 y[i] = yi;
}

cachelines

G. Zachmann 5 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

2D Array Access Patterns (row major vs column major)

§  Consider the following piece in a kernel (e.g., matrix × vector):

Ø Problem: uncoalesced access pattern
§  Elements read on 1st SIMT access: 0, 32, 64, …
§  Elements read on 2nd SIMT access: 1, 33, 65, …
§  Also, extra data will be transferred in order to fill the cache line size

§  Generally, most natural access pattern for direct port of a C/C++ code!

for (int j = 0; j < blockDim.x; j ++) {
 float Aij = A[treadIdx.x][j];
 ... do something with it ...

M Memory
layout of
a matrix in C !

G. Zachmann 6 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

Transposed 2D Array Access Pattern

§  Column major := store a logical row in a physical column

§  I.e., A00 → A[0][0] , A01 → A[1][0] , A02 → A[2][0] , …
 A10 → A[0][1] , A11 → A[1][1] , A12 → A[2][1] , …
 A20 → A[0][2] , …

§  In general: Aij is stored at A + i + j*n

§  Transform the code
to column major:

§  Now, we have coalesced accesses:
§  Elements read on 1st SIMT access: 0, 1, 2, …, 31
§  Elements

read on 2nd
SIMT access:
32, 33, …, 63

for (int j = 0; j < blockDim.x; j ++){
 float Aij = A[j][treadIdx.x];
 ... do something with it ...

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

G. Zachmann 7 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

Modified Matrix*Vector Algorithm for Column-Major Matrix Storage

multMatrixVector(const float * A, const float * x,
 const int n_??????? , float * y)
{
 __shared__ x_cache[THREADS_PER_BLOCK];
 yi = 0.0; // output of each thread
 int i = threadIdx.x + blockIdx.x * blockDim.x; // row index
 for (int j = 0; j < n_columns; j += THREADS_PER_BLOCK)
 {
 // new segment of columns → fill cache
 x_cache[threadIdx.x] = x[j + threadIdx.x];
 // now process this segment of columns
 for (int k = 0; k < THREADS_PER_BLOCK; k ++) {
 Aij = A[i + (j+k)*n_???????];
 yi += Aij * x_cache[j+k];
 }
 }
 y[i] = yi;
}

n_columns

n_columns

G. Zachmann 8 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  Note: from now on, we will use row-major notation
(for sake of clarity)!

§  But we will assume that an actual implementation uses column-major!

§ We expect you to transform everything to column-major

§  Start with small matrices that you can check "by hand"

§ Or implement your code first on the CPU and test it there

G. Zachmann 9 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  Do we keep all hardware resources of the GPU busy?
§  Assume Fermi [2011] hardware:

§  14 SMs, each supports 1536 active threads

§  If M < 21504 = 14×1536 → some SMs are idle!

§  Idea for the case M < 21504 and N "not too small":
§  Use 2D partitioning of our problem/domain

* M

N

Block 0,0 Block 0,1

Block 1,0

Cache size

Cache
size

Block of
threads

segments of a row that will be multiplied to x_cache

segments
of x
that will be
stored in
x_cache

G. Zachmann 10 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  All possible variants:

1.  One thread per row

2.  Several threads per row (previous slide)

3.  Several rows per thread (one thread computes several y[i]'s at the
same time)

4.  Several threads, several rows (version 2 & 3 combined)

§  Which version is best in which case? (YMMV)
High-Performance Matrix-Vector Multiplication on the GPU 3

100

101

102

103

104

105

106

100 101 102 103 104 105 106

O
ne

 th
re

ad
 p

er
 ro

w

Several rows per thread

Several threads per row

Several threads, several cols

m

n

100

101

102

103

104

105

106

100 101 102 103 104 105 106

m

n

Logarithmic mesh

100

101

102

103

104

105

106

100 101 102 103 104 105 106

O
ne

 th
re

ad
 p

er
 ro

w

Several rows per thread

Several threads per row

Several threads,
several cols

m

n

Best Kernel

Out of memory

Fig. 1. Left; Four matrix-vector multiplication kernels designed to perform well at
di↵erent shapes m⇥n of A. Middle; Tuning mesh. Right; Best kernel in practice. The
dashed line indicates the minimum 21504 rows needed in A for full occupancy of the
Nvidia Tesla C2050 card in a one-thread-per-row kernel. Note the logarithmic axes.

row of A and x to produce one element of the result y. The threads are then
grouped in 1D blocks along the columns of A. For a given size of A, the only
parameter required is the number of threads per block, which we will denote by
BLOCKSIZE. The size of the grid specified when launching the kernel in CUDA is
determined by the BLOCKSIZE parameter. Dividing the m rows of A into slices
of size BLOCKSIZE, with the last slice possibly containing less than BLOCKSIZE

rows, we have a one dimensional grid of size

GRIDSIZE m = (m+ BLOCKSIZE� 1)/BLOCKSIZE.

Using a grid of this size requires an if conditional inside the kernel to make sure
the last block does not access memory outside the m rows of A. In Fig. 2 (a)
the kernel is shown for a GRIDSIZE m of 4 as indicated with the red 4⇥ 1 mesh.

Since all threads need the same n values of x for their dot products it is best
to read these into shared memory once per block and then let threads access them
from there. This allows for maximum reuse of the data. We therefore divide x
into chunks of BLOCKSIZE and set up a loop to let the threads collaborate in
reading chunks in a coalesced fashion into a shared memory once per block. It
requires the allocation of a shared memory array of size BLOCKSIZE for each
block. The usage of shared memory is illustrated by red-dotted boxes in Fig. 2.

The one-thread-per-row matrix-vector multiplication kernel is appropriate as
a high-performance kernel on the C2050 card for tall and skinny A only. This is
because the Fermi GPU with 14 SMs supports 1536 active threads per SM [10],
so that full occupancy requires 1536⇥14 = 21504 rows inA. Ifm is less than this,
and A is not skinny, then we are not utilizing the hardware to the maximum.
SMs might be idle or running at low occupancy during kernel execution, while
the running threads might do a lot of work each. If A is skinny, e.g., n < 100,
then dispite the low utilization, the individual threads complete fast enough for
this kernel to be the best implementation. In Fig. 1, we indicate the dimensions
of A for which the one-thread-per-row kernel is designed to perform well.

21000
threads

G. Zachmann 11 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  Computational performance that can be achieved [2011]:

Fast High-performance Modeling Tools
for Many-core Architectures

Stefan L. Glimberg, Allan P. Engsig-Karup, Hans Henrik B. Sørensen, Nicolai F. Gade-Nielsen, Dennis Noer, Erik Zenner, Morten G. Madsen

Introduction and Background
GPULab - A competence center and laboratory for research and collaboration within academia and partners in the industry. Established in 2008 at the Section for Scientific
Computing, DTU Informatics, Technical University of Denmark. In GPULab we focus on the utilization of Graphics Processing Units (GPUs) for high-performance computing
applications and software tools in science and engineering. The goals are to contribute to the development of new state-of-the-art mathematical models and algorithms for
maximum performance and assimilation of results to academic and industrial partners in our network. Our approaches calls for multi-disciplinary skills and understanding of
hardware, software development, profiling tools and tuning techniques, numerical analysis, along with expert knowledge application areas within science and engineering.

Per Christian Hansen
Jan Hesthaven
Bernd Dammann
John Bagterp Jørgensen

Allan Engsig-Karup
Jeppe Frisvad
Boyan Lazarov
Hans Henrik Brandenborg Sørensen

Stefan Lemvig Glimberg
Nicolai Fog Gade-Nielsen

http://gpulab.imm.dtu.dk/

Development of a Massively Parallel Wave Analysis Tool
Ongoing work is concerned with the development of a GPU-accelerated nonlinear free-surface
model (OceanWave3D) for simulation of unsteady fully nonlinear water waves over uneven
depths. The flexible-order finite difference model is based on a unified potential flow formulation,
under the assumption of irrotational inviscid flow. We have redesigned the entire algorithm to
enable efficient utilization of allocated hardware resources - currently targeting many-core GPUs.
Algorithmic efficiency is achieved by solving the bottleneck problem, a large sparse linear system
of equations, iteratively by employing a defect correction method preconditioned by a robust
multigrid method. This strategy results in more than an order magnitude in both problem size and
practical speedup (relative to optimized single-threaded CPU code).

GPULab Library – a High-performance GPU-based Library for
the Development of Scientific Applications
We have an ongoing development of a GPU-based generic C++ library for scientific computing. The
two main goals are to create a common playground for the developers at the section and interested
network contacts, and to keep an up-to-date platform containing the latest results from the
developers. We now have several components for solving large scale partial differential equations.
However, this should not be a limitation and we soon expect to have show-cases with dynamic
optimization and model control problems as well. In the future we seek to expand the library into a
fully distributed tool, in order to achieve maximum performance on cluster-based hardware systems.

Fast Cryptanalysis Tool
In this project the focus has been on developing an efficient high-performance tool for crypto-analysis, utilizing
affordable many-core consumer Graphics Processing Units (GPUs). The crypto-analysis is based on a bit-
sliced DES brute force algorithm. We are developing an efficient implementation of the DES algorithm, which
relies mostly on bitwise operations and takes advantage of the high on-chip bandwidth of GPUs. The current
implementation is based on CUDA and a GTX 275 gaming card. A break down of the step-wise improvement
in the model demonstrates ~10 times speed up in the initial naïve implementation, and after a range of
incremental optimizations the implementation achieved a speed up of ~20 times. With the GTX 275 we have
found that it is possible to test up to 680 million password keys per second, which is a significant improvement.

Fig. 1: We achieve linear scaling of the memory footprint for an
increasing number of total grid points.

Auto-tuning of Dense Linear Algebra on GPUs
We have implemented an auto-tuning framework that can automate the performance tuning
process by running a large set of empirical evaluations to configure applications and libraries
on the targeted GPU platform. Preliminary work is focused on dense vector and matrix-
vector operations, which form the backbone of level 1 and level 2 routines in the Basic Linear
Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific
applications. As an example, we develop a single-precision CUDA kernel for the matrix-
vector multiplication (SGEMV). The target hardware is the most recent Nvidia Tesla 20-series
(Fermi architecture). Our tuned kernels display significantly better performance than the
current CUBLAS v.3.2 library.Fig. 3: Performance of matrix-vector multiplication (SGEMV) in color coded form over the 24x24 logarithmic auto-tuning mesh of

matrix sizes. Dark blue represents low performance, while dark red represent high performance. The figures compare our auto-
tuned kernel to the most commonly used numerical libraries for GPUs, the Nvidia CUBLAS v3.2 and the MAGMA v1.0.0-rc5.

Accelerating Economic Model Predictive Control using GPUs
As stochastic energy production such as wind becomes more common, it is necessary to either store the energy
for later consumption or control the energy consumption to coincide with the energy production. One method to
address this problem is the Smart Grid, where Model Predictive Control can be used to optimize energy
consumption to match with the predicted stochastic energy production and minimize the cost of energy
production from conventional power plants. This can be formulated as a convex optimization problem and solved
using primal-dual interior-points methods. The main computational tasks in such a method are matrix-matrix
multiplications and Cholesky factorization, both of which are very suitable for GPU acceleration. Initial results of
a test case controlling two power plants to match energy consumption show an speed-up of up to ~25 using a
Nvidia Tesla C2050 compared to a sequential CPU version running on a Intel i7-920.

gpulab@imm.dtu.dk – http://gpulab.imm.dtu.dk/

Fig. 5: Power plant control to minimize the energy production cost with a 500 time-step prediction
horizon. P.G. #1 is a slow, but cheap power plant while P.G. #2 is a fast, but expensive power plant.

Fig. 4: Efficiency comparison of password key tests per second for CPU, naïve and optimized GPU kernels.

Fig. 2: Performance speedups for several different GPU
architectures versus the CPU (single thread) version.

Performance of matrix-vector multiplication (SGEMV) over matrices of size m×n

["Fast High-performance Modeling Tools for Many-core Architectures ", Glimberg et al., 2011]

G. Zachmann 12 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

Complexities

§  Sequential version: O(n2) (assuming n=m)

§  Parallel version: O(n) parallel time

§  Assuming O(n) parallel threads

§  Arithmetic intensity:

§  Assume following simplified version:

§  Number of slow memory references = f = 2n + n2

§  Number of arithmetic operations = o = 2n2

§  Arithmetic intensity → memory limited

load vector x completely into fast memory
for i = 1 ... n: // assuming m = n
 load row i of A into fast memory
 for j = 1 ... n:
 yi += A[i][j] * x[j]
 store yi in y[i]

a = o

f

⇡ 2

G. Zachmann 13 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  Remark: actually, SGEMV in BLAS computes

§  Should be fairly straight-forward to modify our kernels

y = ↵Ax+ �y

G. Zachmann 14 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

Matrix-Matrix Multiplication

§  Called SGEMM in BLAS

§  Given matrices A and B, compute P = A.B

§  For sake of simplicity, we'll assume
A and B are square matrices of size n

§  Sequential algorithm:

14

A

B

P

n n

n

n

for i = 1 ... n:
 for j = 1 ... n:
 s = 0.0
 for k = 1 ... n:
 s += A[i][k] * B[k][j]
 P[i][j] = s i k

k

j

G. Zachmann 15 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  Complexity: O(n3)

§  Arithmetic intensity:

§  Even worse than matrix-vector mult.

§  Upper bound (at least with iterative = non-recursive algorithms):

§  Problem: no data re-use!

for i = 1 ... n:
 for j = 1 ... n:
 s = 0
 for k = 1 ... n:
 s += A[i][k] * B[k][j]
 P[i][j] = s

a =
2n3

2n3 + n2
⇡ 1

â =
2n3

3n2
2 O

�
n
�

G. Zachmann 16 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  Approach:
§  Use matrix-vector-multiplication idea

§  Run one thread per row of A:

§  Arithmetic intensity:

§  Not much better L

for j = 1 ... n:
 read column j of B into fast memory (B_cache)
 foreach i = 1 ... n run one thread in parallel:
 s = 0.0
 for k = 1 ... n:
 s += A[i][k] * B_cache[k][j]
 P[i][j] = s

Naïve Parallel Matrix-Multiplication

A

B

a =
2n3

n2 + n3
⇡ 2

G. Zachmann 17 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

Blocked (Tiled) Matrix-Multiplication

§  Remember linear algebra class: the procedure

works also for sub-blocks of the matrices

where
are block matrices of size m

§  Assumption: n = multiple of m

§  In production code, you'd have to
cope with any matrix size!

-  Lots of nitty-gritty details …

A

B

Pij Aik

Bkj

pi j =
nX

k=1

aikbkj

Pi j =
n/mX

k=1

AikBkj

Aik ,Bkj 2 Rm⇥m

=

G. Zachmann 18 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  New approach

§  For each sub-matrix Pij, run one
block of m2 threads

§  Each thread in the block
computes one pij

§  The kernel runs in phases

§  Each phase consists of:

1.  Load blocks Aik, Bkj into shared
memory

-  Each thread loads one aij, one bij

2.  Perform "row × column" over
block

3.  Accumulate partial result

m

 Copy blocks into

fast memory

(2D partitioning):

Aik

Bkj

Pij

G. Zachmann 19 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  Pseudo-Code:

let b = n/m // = number of blocks in each dimension

foreach i = 1...b, j = 1...b run one block in parallel:

 let p = 0.0 // = thread-local accumulator

 for k = 1 ... b:

 load sub-matrices A(i,k) and B(k,j) into shared memory

 ⟶ Asub , Bsub

 for l = 1...m:

 p += Asub[tid.x][l] * Bsub[l][tid.y]

 P[I,J] := p // I,J = per-thread global indices into P

dim3 threadsPerBlock(m,m);

dim3 n_blocks(n/m, n/m);

multMatrices<<< n_blocks, threadsPerBlock >>>(A, B, P, n);

G. Zachmann 20 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  Arithmetic intensity:

§  P consists of b2 blocks

§  For each block Pij, we load b blocks of A and b blocks of B

§ Overall, our algorithm loads 2b3 many blocks

§ One block load = m2 float loads

§ 

§ Overall, our algorithm loads many floats

§  Therefore,

§  Consequence: make m large

§  Limit: all three blocks Pij, Aik, Bkj, must fit in shared memory

b = n
m

2
�
n
m

�3
m2 = 2n3

m

a =
2n3

2n3

m

= m

G. Zachmann 21 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  Calculating m:

§  Assume Kepler-GPU: ~ 2 TFlops/sec = 2.1012 FLOPs/sec ,
 ~ 200 GB/sec = 200.109 B/sec

§  Choose m such that we achieve peak bandwidth & peak FLOPs/sec

§  m = a =

§  Note: these are very crude estimations, but good for a starting point
where to search for the sweet spot

§  Consequence: size of shared memory should be at least
 3 . 402 . 4 Bytes = 19.2 kB

§  Otherwise, we would be bandwidth limited

FLops
Loads

Flops/sec
Loads/sec

=
2.1012 Flops/sec
200

4
.109 B/sec

=

1 Load = 4 Bytes

40 =

G. Zachmann 22 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

Limitations / Optimality

§  Tiling/blocking only works, if the arithm. operation is associative

§  Arithmetic intensity, a, is bounded by size of shared memory, S:

§  Our algorithm performs many loads operations

§  Note: in a sense, our blocked matrix multiplication algorithm is a
way to schedule memory transfers and floating point operations

§  Theorem (Hong & Kung, 1981; w/o proof):
Any schedule of conventional matrix multiplication must transfer
 many floats between slow and fast memory.

§  In this sense, blocked matrix multiplication is optimal

a ⇡ m 
r

S

3

O
� n3p

S

�

O
�

n3p
S

�

G. Zachmann 23 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  Previous optimization is called blocking/tiling (copy optimization)

§  How should matrices A and B be stored?

§  Remember: at the beginning of each phase: each thread loads one aij &
one bij

§  Store matrices in blocked form, in order to achieve coalesced
memory access:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Original matrix
(numbers are addresses)

0

1

4

5

2

3

6

7

8

9

12

14

10

11

13

15

Reorganized
into blocks

G. Zachmann 25 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

Effects of Block Size

0

20

40

60

80

100

120

140

160

180

200

untiled 2x2 4x4 8x8 12x12 14x14 15x15 16x16

G
FL

O
PS

Block size

G. Zachmann 26 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

Comparison with MKL (Intel)

[http://www.scribd.com/doc/47501296/CUDA-3-2-Math-Libraries-Performance]

G. Zachmann 27 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

Strassen's Algorithm

§  All "traditional" algos need O(n3) FLOPs

§  Strassen's algorithm: O(n2.81)

§  Recursive algorithm!

§  See 2nd semester's course "algorithms and data structures"

§  Current world record: O(n2.376)

§  Strassen on GPU?

§  Probably not worth it (recursion / complex control flow)

G. Zachmann 28 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

Recap: Strassen's Algorithm

§  Task: compute

§  Idea : divide-and-conquer

§  Partition A, B, C in 2x2 block matrices

§  Multiplication gives:

§  Which amounts to 8 matrix multiplications of size

G. Zachmann 29 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  The trick: compute some (seemingly tedious) intermediate products

§  Now we can compute the cij's like so:

G. Zachmann 30 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  Computational complexity:

§  Assumption here: multiplications are the expensive operation

T (n) = 7T
�
n
2

�
+ cn2 2 O

�
n2.8...

�

G. Zachmann 31 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

Sparse Matrices

§  Just some remarks

§  Frequent case: sparse band matrices

§  Represent matrix as a number of vectors

§  Devise new parallel algorithm (one thread per row is inefficient)

G. Zachmann 32 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  "Unstructured" sparse matrices:

§ Most common storage format is Compressed Sparse Row (CSR)

struct {

 int n_rows; // number of rows

 int nnz; // total number of non-zero elements

 int row_start[n_rows+1];

 int col_idx[nnz];

 double val[NNZ];

}

row_start

col_idx

val

G. Zachmann 33 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

§  Many more kinds of sparse matrices

§  Specialized representation / algorithms for each of them?

G. Zachmann 34 Matrix Algorithms Massively Parallel Algorithms 22 May 2013 SS

Summary

§  Simple performance models can aid in understanding

§  Two ratios are key:

§  Arithmetic (computational) intensity =

-  "flops" = floating point operations, "mops" = memory operations

§ Machine balance =

flops

mops

Tflops/sec

GB/sec

