Bremen

Massively Parallel Algorithms
Dense Matrix Algorithms

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

eeeeee

W Warming Up: Matrix-Vector Product g

= Given matrix A, and vector x, compute
y = Ax
= One of the most important operations in linear algebra algorithms
= Called SGEMV in BLAS (Basic Linear Algebra Subroutines)

= First approach: one thread per row

7

\A4

Ali, *]
M<< *

y[i] \% x[]
N
= Observation: all threads use the same data from x — shared memory

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms

Y

0.2,
«
e

First Attempt »

multMatrixVector(const float * A, const float * x,

const int n_columns, float * y)

shared x cache[THREADS PER BLOCK];

yi = 0.0; // output of each thread
int i = threadIdx.x + blockIdx.x * blockDim.x; // row index

for (int j = 0; j < n_columns; j += THREADS PER BLOCK)
{

// new segment of columns - f£ill cache

X cache[threadIdx.x] = x[j + threadIdx.x];

// now process this segment of columns

for (int k = 0; k < THREADS PER BLOCK; k ++) ({
Aij = A[i*n _columns + (j+k)]’
yi += Aij*x cache[j+k];

} Block of s ;] >
} threads N ———— 1\ Block-
yl[i] = yi; 1T . size
} 1 -
. J
" For sake of clarity, we assume |
M, N = multiple of block-size ——

G. Zachmann Massively Parallel Algorithms SS May 2013 Blocksize

eeeeee

= The "natural" (C) way to store matrices

| | ol1]2]|3
is called row major order

= 6 | 7/

= Ajjis stored at memory address A + i*n + j 3|9 l10!l11

= For a conventional (sequential) 1211311415

matrix-vector-multiplication algorithm, 16117118119

this is good:

for (int i = 0; i < M; i ++) {
float yi = 0.0;
for (int j = 0; j < N; j ++)
yi += A[i][]J] * x[]J];
yl[i]l = yi;

cachelines

G. Zachmann Massively Parallel Algorithms SS May 2013

‘, CG %

VR %

- F _______§]
[F————]
[e—— W]
e EEEEEEE EE—
e S —
Eaeeesnn S
N B

Matrix Algorithms

Bremen

W 2D Array Access Patterns (row major vs column major)

= Consider the following piece in a kernel (e.g., matrix x vector):

for (int j = 0; j < blockDim.x; j ++) {
float Aij = A[treadIdx.x][j]-
. do something with it ...

Element Offsets
float A[N][M)];

Memory

Althreadldx.X][0]=...; layout of
Althreadldx.x][1]=...;

a matrix in C!
1 thread per row

[N I N S SN S S S S I I S I —_—"—
0 32 64 96 128 160 192 224 256 288 320 352 384 416

» Problem: uncoalesced access pattern

= Elements read on 15t SIMT access: 0, 32, 64, ...
= Elements read on 2" SIMT access: 1, 33, 65, ...

= Also, extra data will be transferred in order to fill the cache line size

= Generally, most natural access pattern for direct port of a C/C++ code!

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 5

eeeeee

Y Transposed 2D Array Access Pattern

= Column major := store a logical row in a physical column

* l.e., Ago = A[O][O] , Aor — A[1][O] , Ao2 — A[2][0],, ... IEN KT AR
A1O_)A[O][1]7A11 _’A[1][1],A12—>A[2][1], 2 | 7 [12|17
Axo — A[O][Z] y eee z i Z 12

= In general: Ajis storedat A + i + j*n

= Transform the code . _ _ _
for (int j = 0; j < blockDim.x; j ++) {

to column major: float Aij = A[j] [treadIdx.x];
. do something with it ...

= Now, we have coalesced accesses:
= Elements read on 15t SIMT access: O, 1, 2, ..., 31

= Elements Element Offsets
eadon 20 (U CRICN S
SIMT access: O 1 [N+1 | 31N |
32 33 PRI AL]lthreadidx.x]-... 1 thread per column R
’ ’ '..’ e

- 1 T 1 1 [T 1 1 [[[]
G. Zachmann ERWEVEIEIE 0 32 64 96 128 160 192 224 256 288 320 352 384 416

eeeee

Modified Matrix*Vector Algorithm for Column-Major Matrix Storage

multMatrixVector(const float * A, const float * x,

const int n_columns , float * y)

__shared x cache[THREADS PER BLOCK];

yi =0.0; // output of each thread

int 1 = threadldx.x + blockIdx.x * blockDim.x;
for (int j =

{

// row index
0; J < n _columns; j += THREADS PER BLOCK)

// new segment of columns - fill cache

x cache[threadIdx.x] = x[j + threadIdx.x];

// now process this segment of columns

for (int k = 0; k < THREADS PER BLOCK; k ++) ({
Aij = A[i + (J+k)*n_columns];
yi += Aij * x cache[j+k];

y[i] = yi;

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms

.

<N

E-X,)

e e e e

= Note: from now on, we will use row-major notation
(for sake of clarity)!

= But we will assume that an actual implementation uses column-major!
= We expect you to transform everything to column-major
= Start with small matrices that you can check "by hand"

= Or implement your code first on the CPU and test it there

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms

7. cc

VR %

= Do we keep all hardware resources of the GPU busy?

= Assume Fermi [2011] hardware:

= 14 SMs, each supports 1536 active threads
= [f M <21504 =14%x1536 — some SMs are idlel
" |dea for the case M < 21504 and N "not too small":

= Use 2D partitioning of our problem/domain

- s N 7 D
Block of >
threads{ Blog¢k 0,0 Block O,1 S
M= Blogk 1,0
N
\. y. \ y,
\ \]
Y Y
Cache size N
G. Zachmann Massively Parallel Algorithms SS May 2013

segments of a row that will be multiplied to x_cache

. cc %

Cache
size

N

segments
% of x
that will be

stored in

/ x_cache

Matrix Algorithms

VR =

eeeee

= All possible variants:
1. One thread per row
2. Several threads per row (previous slide)

3. Several rows per thread (one thread computes several y[i]'s at the
same time)

4. Several threads, several rows (version 2 & 3 combined)

= Which version is best in which case? (YMMV)

Logarithmic mesh Best Kernel
10° 10° 10°
- Several rows per thread 10° 1ok Several rows per thread
,,, <« 21000
10° 10% 10* threads
3 % 3 3 %
m 10 = Several threads per row m 10’} / / / ! {1 M 10° . : :
2 2, Several threads per row
3 3
10° o 10° 10°]
— —
=) =
(] Q
10 5 10] 10 5 » Several threads,)
Several threads, several cols several cols
Q0L T : : : 10° i : : ‘ ‘ 10° : : ‘ : ‘
10° 10' 10° 10° 10* 10° 10° 10° 10' 10° 10° 10* 10° 10° 10° 10’ 10° 10° 10* 10° 10°
n n n

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 10

Bremen

= Computational performance that can be achieved [2011]:

CUBLAS v3.2 MAGMA v1.0.0-r¢5 Our kernel

Gflops 0

Performance of matrix-vector multiplication (SGEMV) over matrices of size mxn

["Fast High-performance Modeling Tools for Many-core Architectures ", Glimberg et al., 2011]

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 11

eeeee

U Complexities

= Sequential version: 0O(n?) (assuming n=m)
= Parallel version: O(n) parallel time

= Assuming O(n) parallel threads

= Arithmetic intensity:

= Assume following simplified version:

load vector x completely into fast memory
for i =1 ... n: // assuming m = n
load row i of A into fast memory
for =1 ... n:
yi += A[i]1[3] * =x[3]
store yi in y[i]

= Number of slow memory references = f = 2n + n?

= Number of arithmetic operations = 0 = 2n?

= Arithmetic intensity @ = % ~~ 2 — memory limited

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms

7. cc

VR %

12

eeeeee

= Remark: actually, SGEMV in BLAS computes y = aAx + [y

= Should be fairly straight-forward to modify our kernels

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms

13

eeeeee

U Matrix-Matrix Multiplication L

= Called SGEMM in BLAS
= Given matrices A and B, compute P =A‘B

= For sake of simplicity, we'll assume

A and B are square matrices of size n

= Sequential algorithm:

Aol »

for 1
for j
s =

s += A[i] [k] * B[k]I[]]
P[i][]] = s

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 14

Yy B

VR %

= Complexity: O(n3)

= Arithmetic intensity: for i = 1 ... n:
for j =1 n
2”3 s =0
d = 2 3 > ~]- for k =1 n
n>+n s += A[i][k] * B[k][j]
P[i][j] = s

= Even worse than matrix-vector mult.

= Upper bound (at least with iterative = non-recursive algorithms):

3
§:2ieo(n)

3n?

" Problem: no data re-use!

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 15

eeeeee

J
Y Naive Parallel Matrix-Multiplication C}i

= Approach:
= Use matrix-vector-multiplication idea

= Run one thread per row of A:

for j =1 ... n:
read column j of B into fast memory (B _cache)
foreach 1 =1 ... n run one thread in parallel:
s =0.0
for k=1 ... n:

s += A[i] [k] * B _cache[k][]]
P[i][J] = s
= Arithmetic intensity:
2n3

a=—-~2
n? + n3

= Not much better ®

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 16

eeeeee

Y Blocked (Tiled) Matrix-Multiplication g

= Remember linear algebra class: the procedure

n
Pij = E aikbkj A
k=1

works also for sub-blocks of the matrices

n/m
| |
P,'j = E AikBkj By
k=1 e—
where Ajx, Byj € R Ak P

are block matrices of size m

= Assumption: n = multiple of m
= In production code, you'd have to (

cope with any matrix size!

- Lots of nitty-gritty details ...

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 17

eeeeee

= New approach (2D partitioning):

= For each sub-matrix P;jj, run one
block of m? threads

= Each thread in the block
computes one pj;

= The kernel runs in phases

= Each phase consists of:

1. Load blocks Ajk, Byjinto shared
memory

- Each thread loads one ajj, one bj;

2. Perform "row x column" over
block

3. Accumulate partial result

G. Zachmann Massively Parallel Algorithms SS

May 2013

. cc &

VR =

Aik

Bk-

Copy blocks into
fast memyry

Matrix Algorithms 18

eeeee

l&y g%ﬁ ;%§

...

= Pseudo-Code:

let b = n/m // = number of blocks in each dimension
foreach i = 1...b, j =1...b run one block in parallel:
let p = 0.0 // = thread-local accumulator
for k=1 ... b:

load sub-matrices A(i,k) and B(k,j) into shared memory
— Asub , Bsub
for 1 =1...m:
p += Asub[tid.x][1] * Bsub[l][tid.y]
P[I,J] :=p // I,J = per-thread global indices into P

dim3 threadsPerBlock (m,m) ;
dim3 n blocks(n/m, n/m);
multMatrices<<< n blocks, threadsPerBlock >>>(A, B, P, n); p

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 19

eeeeee

= Arithmetic intensity:
= P consists of b2 blocks
= For each block P;j;, we load b blocks of A and b blocks of B
= Overall, our algorithm loads 2b3 many blocks

= One block load = m? float loads

sh=1n

m

. 3 3
= Overall, our algorithm loads 2(%) m? = 2°~ many floats

2n3

= Therefore, a =

= Consequence: make m large

= Limit: all three blocks Pjj, Ak, Bxj, must fit in shared memory

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms

20

eeeeee

= Calculating m:

= Assume Kepler-GPU: ~ 2 TFlops/sec = 2:1012 FLOPs/sec ,
~ 200 GB/sec = 200-10” B/sec

= Choose m such that we achieve peak bandwidth & peak FLOPs/sec

FLops # Flops/sec 2-1012 Flops/sec
« meg= ps _ ps/ _ ps/

Loads # Loads/sec - _2@_.109 B/sec -
4

N

1 Load = 4 Bytes

- Note: these are very crude estimations, but good for a starting point
where to search for the sweet spot

- Consequence: size of shared memory should be at least
3402 4 Bytes = 19.2 kB

= Otherwise, we would be bandwidth limited

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 21

eeeeee

Y Limitations / Optimality

= Tiling/blocking only works, if the arithm. operation is associative

= Arithmetic intensity, a, is bounded by size of shared memory, §:

ar~m< §
~T=V3

n3

= Our algorithm performs O(—=) many loads operations

VS

= Note: in a sense, our blocked matrix multiplication algorithm is a
way to schedule memory transfers and floating point operations

= Theorem (Hong & Kung, 1981; w/o proof):
Any schedule of conventional matrix multiplication must transfer

O(;;) many floats between slow and fast memory.

= |n this sense, blocked matrix multiplication is optimal

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 22

eeeeee

= Previous optimization is called blocking/tiling (copy optimization)
= How should matrices A and B be stored?

= Remember: at the beginning of each phase: each thread loads one aj; &
one bi]'

= Store matrices in blocked form, in order to achieve coalesced
memory access:

Original matrix Reorganized
(numbers are addresses) into blocks
0| 4|8]12 Ol 2|8]10
1 (5] 913 1 (3|9 |11
2| 6 [10]14 416 (12113
3 (7 (|11]15 517 |14(15

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms

23

eeeeee

Y Effects of Block Size s

200
180
160
140

¥ 120

S 100

O 80

60
40
20
o =

untiled 2x2 4x4 8x8 12x12 14x14 15x15 16x16
Block size

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 25

Bremen

Y Comparison with MKL (Intel)

DGEMM 3.2 +DGEMM 3.1 DGEMM MKL 4 THREADS

8% §

Large perf

ri i
7x Faster than MKL YOBLAS 3.1

MKL 10.2.3

R RIS P A N N . SRR, VY Y . SO, R S N S S, W S N ¥
< AV 2O P PP AP ISPV D NV P o
’\W’»@fi"f{,\'\,’"\f’@&@@a@é‘é’@'\“’«'\é‘é’é’é"ﬁb

Dimension (m=n=Kk)

Juration

[http://www.scribd.com/doc/47501296/CUDA-3-2-Math-Libraries-Performance]

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 26

eeeeee

W Strassen's Algorithm ‘.

= All "traditional" algos need O(n3) FLOPs
= Strassen's algorithm: O(n4-81)
= Recursive algorithm!
= See 2"d semester's course "algorithms and data structures"
= Current world record: O(n?-379)
= Strassen on GPU?

= Probably not worth it (recursion / complex control flow)

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 27

eeeeee

Y Recap: Strassen's Algorithm

" Task: compute C=A-B, A, BcR™"
= |dea : divide-and-conquer

= Partition A, B, C in 2x2 block matrices

C11 C12) _ (@11 ai2) (b1 bi2
Co1 C22 dp1 ano b1 boo
. Ny n
mit aj;, bjj, cjj € R272

= Multiplication gives:

C11 = aii1bi1 + ai12b21

Cop = ani1bi1 + a»oboo

= Which amounts to 8 matrix multiplications of size g X g

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 28

eeeeee

= The trick: compute some (seemingly tedious) intermediate products
Q1 = (811 + a22)(b11 + b22)
Q2 = (a21 + ax2)b11
Q3 = a11(b12 — b22)
Q4 = azxo(—b11 + b21)
Qs = (a11 + a12) bao
Qe = (—a11 + a21)(b11 + b12)
Q7 = (812 — a22)(b21 + b22)
" Now we can compute the ¢j's like so:

C11 = Q1+ Q4 — Qs + Q7
Clo = Q2+ Q4
Co1 = Q3+ s
Coo = Q1+ Q3 — Q2+ Qs

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms

29

eeeeee

"VR M

= Computational complexity:
T(n)=7T(2)+ cn® € O(n2'8'“)

= Assumption here: multiplications are the expensive operation

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 30

eeeee

U Sparse Matrices

= Just some remarks

= Frequent case: sparse band matrices
= Represent matrix as a number of vectors

= Devise new parallel algorithm (one thread per row is inefficient)

Matrix N Vectors
(‘A H
N { PN H...H
i
- IR p% 8T
N

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms

F o &

VR =

31

eeeee

<,
<n
=0
o e]

"Unstructured" sparse matrices:

= Most common storage format is Compressed Sparse Row (CSR)

struct {
int n _rows; // number of rows
int nnz; // total number of non-zero elements

int row_start[n rows+l];
int col idx[nnz];

double val[NNZ];

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 32

Bremen

. Jd i
@ o

= Many more kinds of sparse matrices

= Specialized representation / algorithms for each of them?

?’.“:lzgflz I]: I 1 I 1 I
333002 4 4 .
o3 *3,, o i
000 Tt g3 gpte g
$3 . e, ?
20:»00 30:}:0:“. ve ., 1
RS 2 I
3 . oi”” s
3¢ % (IR
30+ w o ¥y ’g;:':.: 1
0? .’0 + ‘g&é. v
* e
. RS 18 s
40+ »og‘:p’ég 4
o o+ @ .
“we e
.0’333 :.“;0’:: ‘ * *
a0 ’0’:3§:0 :’:3 oot : ;; +]
e " . ‘e :
e * 0’“ * e
60 3 E
$.08
s § 8 ¢ « .
70+ ’:‘§ +'3% : : ; * §:-
.o see TN 080 .
MDD IR R OB .
0:3000 000’0 CYREEY B

N
a0 - &:§3 000% 4
‘e e . N
e o o . e
“w e e ‘e

100 1 L 1] MENSRAIN %% +) ee B

0 10 20 30 40 50 60 70 Gl 30 100

G. Zachmann Massively Parallel Algorithms SS May 2013 Matrix Algorithms 33

Bremen

U Summary

= Simple performance models can aid in understanding

= Two ratios are key:

= Arithmetic (computational) intensity = ﬁ—lsx

- "flops" = floating point operations, "mops" = memory operations

Tflops/sec

= Machine balance = GB /sec

G. Zachmann Massively Parallel Algorithms SS May 2013

Matrix Algorithms

. CG %
VR =

34

